সোনালি অনুপাত – একটি বিস্ময়কর সংখ্যা

আপনি মহাবিশ্বের সাথে কথা বলতে চান? বের করে আনতে চান এর পরতে পরতে লুকিয়ে থাকা রহস্য? তাহলে মহাবিশ্ব আপনার সাথে যে কথা বলছে তা বুঝতে হবে। ভাবছেন কি-সব বলছি? মহাবিশ্ব আবার কেমনে কথা বলে? এর কি আর ভাষা আছে নাকি? হ্যাঁ অবশ্যই আছে, আর সে ভাষাটি হচ্ছে গণিত। মহাবিশ্ব মূলত এই গণিতের মাধ্যমেই কথা বলছে আমাদের সাথে। কিন্তু আমরা সেই ভাষা বুঝি না বলে তার আচার-আচরণও বুঝি না। কিন্তু আমি আপনি না পারলে কি হবে! হাজার হাজার উৎসুক মানুষ ঠিকই মহাবিশ্বের ভাষা বুঝতে চেষ্টা করেছে। আর বুঝেছেনও। বের করে এনেছেন অনেক রহস্য। আপনিও সেই মানুষদের একজন হতে চান? তাহলে আপনাকেও বুঝতে হবে সেই গণিত। আজ আমি আপনাদের সেই ভাষার একটি বিস্ময়কর শব্দ সম্পর্কে জানাবো। আমাদের মানুষের ভাষায় যাকে বলা হয় সোনালি অনুপাত।

সোনালি অনুপাত কি :

গোল্ডেন রেশিও বা সোনালি অনুপাত যাকে φ বা ‘ফাই’ (Phi) দ্বারা প্রকাশ করা হয়। এটি একটি অমূলদ সংখ্যা। যার সাংখ্যিক মান 1.61803398875….।

সোনালি অনুপাত, নাম শুনেই বুঝা যাচ্ছে এ যেন সোনার মতোই এক দামী রত্ন! কিন্তু প্রকৃত অর্থে তা সোনা চেয়েও অনেক অনেক গুণ বেশি মূল্যবান। কেন এত মূল্যবান তা আমরা একটু পরেই জানতে পারবো। এই মহাবিশ্বের বিশাল বিশাল গ্যালিক্সি থেকে শুরু করে আমাদের শরীরের অভ্যন্তরের ক্ষুদ্র ডিএনএ (DNA) পর্যন্ত এই অনুপাত অনুসরণ করে থাকে।

সোনালি অনুপাতের গানিতিক পরিচয় :

যদি দুইটা ভিন্ন সংখ্যার যোগফল ও বৃহত্তম সংখ্যার অনুপাত এবং বৃহত্তম ও ক্ষুদ্রতম সংখ্যার অনুপাত পরষ্পর সমান হয় তবে আমরা বলতে পারি সংখ্যা দুইটি সোনালি অনুপাতে বিরাজমান। 

অর্থাৎ যদি a ও b দুইটি সংখ্যা হয় যেখানে a>b এবং তাদের ক্ষেত্রে,

সোনালি অনুপাতের মান নির্ণয় :

সোনালি অনুপাতের সংজ্ঞা অনুসারে আমরা পাই, 

বামপক্ষের লব ও হরকে b দ্বারা ভাগ করে পাওয়া যায়,

এখন আমরা সংজ্ঞা অনুসারে a/b এর স্থলে ফাই বসাতে পারি, তাহলে সমীকরণ দাঁড়ায়-   

বা,

তাহলে আমরা পেলাম একটি দ্বিঘাত সমীকরণ। আর আমরা জানি, দ্বিঘাত সমীকরণ এর দুইটি সমাধান পাওয়া যায়, এর ঋণাত্মক সমাধান বাদ দিয়ে আমরা ফাই এর মান পাই নিম্নরুপ। এটিই হচ্ছে সেই বিখ্যাত সোনালি অনুপাত।       

এবার চিনলেন ত সোনালী অনুপাত কি? এবার আসুন আমরা মহাবিশ্বের পরতে পরতে সোনালি অনুপাত খুঁঝে বের করি।  

মানবদেহে সোনালি অনুপাত~   

মানব দেহে সোনালি অনুপাত

গণিতের চোখ দিয়ে যদি আপনি একটু আপনার দেহের দিকে উঁকি দেন তাহলে বিস্মিত হবেন।দেহের বিভিন্ন অঙ্গের অবস্থান কিভাবে সোনালি অনুপাত মেনে চলে তা বিস্ময়কর। আপনি আপনার উচ্চতা আর আপনার নাভীর উচ্চতা মাপুন। দেখবেন নাভী আপনার উচ্চতার তুলনায় সোনালি অনুপাতে অবস্থান করছে। অর্থাৎ আপনার উচ্চতাকে এবং আপনার নাভী থেকে নিচ পর্যন্ত উচ্চতা দিয়ে ভাগ করুন, তাহলে পাবেন ১.৬১৮০…।

আবার বাহুর দৈর্ঘকে কনুই এর দৈর্ঘ দিয়ে ভাগ করেন তা ও পাবেন সোনালি অনুপাত এর কাছাকাছি মান। একই ভাবে আঙ্গুল ও মানুষের মুখেও খুজে পাবেন এই সোনালি অনুপাত।

অন্যান্য প্রাণিতে সোনালি অনুপাত~

এবার চলুন একটু সামুদ্রিক স্টার ফিশ-এর দিকে নজর দিই। একটু সূক্ষ্ম দৃষ্টি দিয়ে দেখলে দেখবেন স্টার ফিশ এর বাহু সোনালি অনুপাত মেনে চলে। এর কোনো একটি সম্পূর্ণ বাহুর দৈর্ঘ এবং ঐ বাহুতে যে অন্য বাহু ছেদ করে তার ২য় বিন্দুর দূরত্ব দিয়ে ভাগ করুন। পেয়ে যাবেন সেই বিস্ময়কর সোনালি অনুপাত। এরকম প্রাণিদের মধ্য থেকে হাজারো উদাহরণ দেওয়া যাবে। যেমন- নেওটিলাস শেল, ডলফিন, মৌমাছির মৌচাক, পিপড়া ইত্যাদি।        

প্যান্টাগন এ সোনালি অনুপাত~      

পেন্টাগনে সোনালি অনুপাত

সুষম পেন্টাগন বা পঞ্চভুজ গোল্ডেন রেশিওর একটি বিশেষ জ্যামিতিক গঠন। সুষম পঞ্চভুজ হচ্ছে পাঁচটি বাহুবিশিষ্ট একটি আবদ্ধ ক্ষেত্র যার প্রতিটা বাহু সমান। এর পাঁচটি  শীর্ষ থাকে। প্রতিটি শীর্ষ সমান ১০৮ ডগ্রি কোণ উৎপন্ন করে এবং কোণগুলো ব্যবহার করে পাঁচ কোণাবিশিষ্ট একটি তারকা আঁকা যায়। এরূপে অঙ্কিত তারকাটিকে বলা হয় পেন্টাগন। লক্ষ করে দেখুন, পেন্টাগ্রামের মাঝেও একটি পেন্টাগন গঠিত হয়েছে।

পেন্টাগনের বাহুর দৈর্ঘ্য ১ একক হলে তারার বাহুগুলোর দৈর্ঘ্য হয় φ। অর্থাৎ পেন্টাগনের প্রতিটা বাহু পেন্টাগনের প্রতিটা কর্ণের সাথে সোনালি অনুপাতে থাকে। একটি পেন্টাগনে একটি অপরটির ওপর দিয়ে গেছে এরূপ ত্রিভুজ আছে ৫টি। চিত্রে মোট ত্রিভুজ ৩৫টি এবং মোট চতুর্ভুজ ২১টি। পেন্টাগনের বিশেষত্ব কোথায়? আপাতদৃষ্টিতে ছবিটাকে সাধারণ একটি জ্যামিতিক কাঠামো বলে মনে হতে পারে। তবে ছবি থেকে একেকটা অংশ তুলে নিয়ে মাপ দিলে দেখা যাবে পেন্টাগনের প্রতিটা কর্ণ গোল্ডেন সেকশনে আছে। মূল ত্রিভুজগুলোর সব গোল্ডেন ত্রিভুজ। তা ছাড়া বিভক্ত প্রতিটা রেখা একটি অপরটির সাথে গোল্ডেন রেশিও অনুপাতে থাকে।

গোল্ডেন স্পাইরাল~

সোনালী অনুপাত এর সাথে ফিবোনাক্কি সিরিজ এর একটি গভীর সম্পর্ক রয়েছে। বলা যায় ফিবোনাক্কি সিরিজ গোল্ডেন রেশিও এর একটি ফলাফল। এই শ্রেণীর যেকোন সংখ্যা তার পূর্ববর্তী দুটি সংখ্যার যোগফলের সমান হয়। যেমন- ০,1,1,2,3,5,8,13,21,34,55,89,144 0+1= 1, 1+1=2, 1+2=3, 2+3=5, 3+5=8 

ফিবোনাক্কি সিরিজ আবিষ্কার করেছিলেন ত্রয়োদশ শতাব্দীর বিখ্যাত গণিতবিদ Leonardo Da Pisa। তিনি বলেছিলেন, “প্রকৃতির মূল রহস্য এ রাশিমালাতে আছে”। এ রাশিমালা বলতে ফিবোনাক্কি রাশিমালা। যদি এই সিরিজের একটি পদকে এর আগের পদ দ্বারা ভাগ করা হয়, তবে পাওয়া যায় ফাই (φ) এর মান। তালিকার প্রথম কিছু পদের ক্ষেত্রে মান ভিন্ন হলেও ৩৯ তম পদে গিয়ে তা ’ধ্রব’ হয়ে যাবে। 1/1 = 1, 2/1 = 2, 3/2 = 1·5, 5/3 = 1·666…, 8/5 = 1·6, 13/8 = 1·625, 21/13 = 1·61538… এখানে দেখা যাচ্ছে,প্রথম ৩টি পদ বাদে অন্যগুলোর মান সোনালি অনুপাতের অনেকটা কাছাকাছি। 

এবার ফিবোনাক্কি সিরিজের সাথে সোনালি অনুপাতের জ্যামিতিক সম্পর্কে আসি। প্রথমে ফিবোনাচ্চি সিরিজের রাশিগুলো দিয়ে একটি চিত্র অঙ্কন করি। চিত্রে রাশিগুলোকে আলাদা আলাদা বর্গক্ষেত্র হিসেব করে ধারাবাহিকভাবে একটার পাশে অন্যটা বা প্রয়োজনে ডানে-বামে বসায়। বর্গক্ষেত্রগুলো প্রথমে ১ বর্গএকক, আবার ১ বর্গএকক , তারপর ২ বর্গএকক , তারপর ৩ , তারপর ৫, তারপর ৮, তারপর ১৩, তারপর ক্রমান্বয়ে ২১, ৩৪ বর্গএকক। আমরা যখন ধারাবাহিকভাবে এটি আঁকতে থাকবো দেখা যাবে এটি একটি আয়তক্ষেত্র গঠন করবে। এই আয়তক্ষেতকে বলা হয় Golden Rectangle। এর বিশেষ বৈশিষ্ট্য হলো প্রতিবারই আয়তের দৈর্ঘ্য : প্রস্থ = 1.6180…= Golden Ratio হবে। এবার আমরা আয়তের কর্ণগুলোকে একের পর এক যুক্ত করি তাহলে এখানে একটা spiral তৈরি হবে। একে বলা Golden Spira ।

মিল্কিওয়ে গ্যালাক্সিতে গোল্ডেন রেশিও~   

গ্যালাক্সিতে সোনালি অনুপাত

আমাদের সৌরজগত যে গ্যালাক্সিতে অবস্থান করছে তার নাম মিল্কিওয় গ্যালাক্সি, যা একটি সর্পিলাকার গ্যালাক্স। একটু পরখ করলেই দেখবেন এর বাহুতে গোল্ডেন স্পাইরাল বসানো সম্ভব। আর যেহেতু গোল্ডেন স্পাইরাল গোল্ডেন রেশিওরই একটি ফলাফল তাই বলা যায় এই রহস্যময় সংখ্যাটি গ্যালাক্সিতেও বিরাজমান। একই ভাবে হারিকেন, ঘূর্ণিঝড়, শামুক ইত্যাদিতেও এই গোল্ডেন স্পাইরাল বসানো সম্ভব যা সত্যিই বিস্ময়ক। 

গাছের বৃদ্ধিতে সোনালি অনুপাত~   

গাছের বৃদ্ধিতে সোনালি অনুপাত

গাছের বৃদ্ধিতে সোনালি অনুপাত এর যাদু রয়েছে। গাছের ডাল তৈরির সময় দেখবেন প্রথমে এর মূল অংশ অর্থাৎ ১টি ডাল, তারপর সেখান থেকে আর ১টি, তারপর ঐ একটি থেকে ২টি, এরপর ৩,৫…..এভাবে ফিবোনাক্কি সিরিজ মেনে ঢাল সৃষ্টি হয়। আর ফিবোনাক্কি সিরিজ মানেই ত সোনালি অনুপাত। অবাক করা বিষয়, তাই না!

সৌন্দর্যে সোনালি অনুপাত~     

মোনালিসায় সোনালি অনুপাত

সোনালি অনুপাত এর মতো লিওনার্দো দ্য ভিঞ্চি ও বিস্ময়কর একজন শিল্পী। তিনিই প্রথম মানব দেহে সোনালি অনুপাত এর উপস্থিতি লক্ষ্য করেন। এবং তিনি তা তার শিল্প কর্মেও অভূতপূর্ব ভাবে ফুটিয়ে তুলছেন। এজন্য তাকে ‘মাস্টার অফ গোল্ডেন রেশিও’ বলা হয়। তার বিখ্যার চিত্রকর্ম ‘Monalisa’ এটি সোনালি অনুপাত এর অত্যাশ্চর্য শিল্পকর্ম।

ডিজাইনে সোনালি অনুপাত~           

এপল লোগোতে সোনালি অনুপাত

প্রাচীন কাল থেকেই মানুষ সোনালি অনুপাত এর গুরুত্ব ও সৌন্দর্য বুঝতে পারে। এই সোনালি অনুপাত যেকোন কিছুকে সুন্দর আকৃতি দান করে। তাই বড় বড় প্রতিষ্ঠান গুলো তাদের লোগো অসাধারণ সৌন্দর্যে মন্ডিত করার জন্য এই সোনালি অনুপাত মেনেই ডিজাইন করে থাকে। যেমন Google, Apple, Honda, Toyota ইত্যাদি।       

এভাবে মহাবিশ্বের পরতে পরতে লুকিয়ে আছে এই বিস্ময়কর সোনালি অনুপাত। গণিতের এই একটি শব্দ দিয়েই মহাবিশ্ব আমাদের দিয়ে যাচ্ছে এক অভাবনীয় বার্তা। বুঝার চেষ্টা করেছিলেন কখনো?        

লেখকঃ মোহাম্মদ ফাহিম উদ্দীন

চট্টগ্রাম প্রকৌশল ও প্রযুক্তি বিশ্ববিদ্যালয়  

তড়িৎ ও ইলেকট্রনিক কৌশল বিভাগ  

Share:

Facebook
LinkedIn
WhatsApp

Leave a Comment

Your email address will not be published. Required fields are marked *

On Key

Related Posts

Writing Research Paper With Latex

Why to use LaTeX?

Making the one around you use LaTex or convince a colleague to move where you can write up your whole document in word is a

Total Differentiation explained in bangla.

TOTAL DIFFERENTIATION শব্দটি প্রথম শোনার পর মনে হতে পারে অনেক জটিল কিছু।আজকে আমরা বিষয়টিকে খুবি সহজভাবে বুঝার চেষ্টা করবো ইনশাআল্লাহ।Total Differentiation কে আমরা দুইভাগে আলোচনা

মার্কেটিং এর শুরুতে ‘ঠিক বেঠিক মার্কেটিং’

বইঃ ঠিক বেঠিক মার্কেটিং লেখকঃ গালিব বিন মোহাম্মদ  প্রকাশনীঃ আদর্শ রেটিংঃ৮/১০ আপনিও যদি মার্কেটিং জগতে নতুন প্রবেশ করতে চান তাহলে “ঠিক বেঠিক মার্কেটিং” বইটি আপনার